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Abstract- The retail sector often does not possess 
sufficient knowledge about potential or actual frauds. 
This requires the retail sector to employ an anomaly 
detection approach to fraud detection. To detect 
anomalies in retail transactions, the fraud detection 
system introduced in this work implements various 
salient features of the human immune system. This 
novel artificial immune system, called CIFD 
(Computer Immune system for Fraud Detection), 
adopts both negative selection and positive selection to 
generate artificial immune cells. CIFD also employs an 
analogy of the self-Major Histocompatability Complex 
(MHC) molecules when antigen data is presented to 
the system. These novel mechanisms are expected to 
improve the scalability of CIFD, which is designed to 
process gigabytes or more of transaction data per day. 
In addition, CIFD incorporates other prominent 
features of the HIS such as clonal selection and 
memory cells, which allow CIFD to behave adaptively 
as transaction patterns change.  

Keywords: self-MHC, positive selection, negative 
Selection, anomaly detection, fraud detection 

1 Introduction 

As many business sectors in the UK and Europe move 
towards implementing e-commerce solutions, and come to 
rely ever more heavily upon open systems and networks, 
the potential for fraud and related criminal activities is 
greatly increased. In order to promote the move towards 
secure e-commerce, research aimed at providing efficient 
and effective fraud detection is being pursued with 
increasing vigour (AAAI, 2002). 

The financial fraud problem studied in this paper is set 
in the retail business sector, where business transactions 
are handled electronically. As a result, they are potential 
targets for various fraudulent activities. However, the 
retail sector often does not possess sufficient expertise 
about potential or actual frauds. This requires the retail 
sector to employ an anomaly detection approach to fraud 
detection.  

In order to develop a fraud detection system (FDS) to 
meet the new requirement for detecting retail business 

fraud, this paper introduces a novel fraud detection 
approach implementing analogies of various salient 
features of the human immune system (HIS). The negative 
selection algorithm is the most well known artificial 
immune system (AIS) that has been popularly used for 
anomaly detection (De Castro and Timmis, 2002). 
However, a recent study shows a scaling problem with this 
algorithm when it is used to monitor a large amount of real 
data (Kim and Bentley, 2001). This problem motivates 
this study to propose a new AIS, which can detect 
anomalies from a huge volume of retail transaction data.   

The novel AIS, called CIFD (Computer Immune 
system for Fraud Detection), implements negative 
selection and positive selection together to generate 
artificial immune cells. In addition, it employs the analogy 
of the self-Major Histocompatability Complex (MHC) 
molecules in order to present antigen data to the system. 
These novel features are introduced in order to improve 
the scalability of CIFD. In addition, CIFD accommodates 
other salient features of the HIS, which are often 
implemented by AIS such as clonal selection and artificial 
memory cells. These features allow CIFD to behave 
adaptively as transaction patterns change.  

In the next section, we present a brief review of 
financial fraud in the retail sector. Section 3 introduces the 
T-cell development process of the HIS and section 4 
describes how CIFD implements the T-cell development 
process introduced in section 3. Then, section 5 gives an 
overview of the conceptual architecture of the CIFD 
system, and section 6 discusses related work with the HIS 
analogy CIFD has used with respect to the system 
scalability. Finally, section 7 presents further work with 
our interim conclusions.  

2 Financial Fraud in Retail Business 

In order to develop an effective fraud detection system 
(FDS), the appropriate monitoring targets of the FDS 
should first be identified. The potential frauds within a 
large retail business can be broadly classified into two 
categories: fraud against the business itself, and fraud 
against its clients via its systems. The CIFD system 
presented in this paper focuses on detection of frauds in 
the former category. This type of fraud, which is against 



the business itself, can also be categorised into three 
groups according to the potential parties committing the 
fraud. They are customers (users of the services), 
employees who are regular users of the retail transaction 
processing system (RTPS), and other employees who are 
not normally users of the RTPS but have legal access to it. 
The second group was selected as the most suitable 
monitoring target for CIFD for the following reasons: 

 
• Customers using the services would be more easily 

able to commit fraud against the selected business’s 
clients than against the business itself.   

 
• Other employees with legal access to RTPS who wish 

to commit fraudulent activities would probably have 
to do so in conspiracy with the employees who use 
the system in order to obtain cash or stock. 
 

Thus, it is believed that the focus of CIFD on monitoring 
internal users of the RTPS greatly reduces the overall 
complexity of the task without seriously compromising the 
effectiveness of the system. A typical example of a fraud 
that is committed by the internal users of the RTPS is the 
entry of fake transactions. The internal users, who are 
employees of an outlet, are paid proportionally according 
to the number of transactions they process per day. Hence, 
it is often found that they spread a possible transaction 
into several transactions, causing the retail business owner 
to overpay. However, other than this simple example, the 
end-users of CIFD do not posses much detailed 
knowledge of frauds.  

Because of these reasons, CIFD aims to detect 
anomalies in product sales patterns, made from the 
transactions entered by the internal users of RTPS. The 
basic concept of detecting anomalous product sales 
patterns is to look for patterns that appear to be 
significantly different from normal product sales patterns 
observed from data collected previously. 

3 Supplementing Negative Selection for T-cell 
Maturation 

3.1 Negative Selection Algorithm 

CIFD aims to detect non-self product sales patterns by 
discerning those patterns that are not regarded as normal. 
T-cells in the HIS are a type of immune cell which plays a 
leading role in dicriminating between self and non-self 
cells. Alongside the ability to detect non-self antigens, T-
cells also have a key feature called self-tolerance: not 
reacting to self antigens. One explanation of how T-cells 
achieve self-tolerance is given by negative selection 
(Tizard, 1995). At the thymus, immature T-cells develop 
into mature T-cells and negative selection occurs during 
this process. During negative selection, immature T-cells 
in the thymus are tested to see if they bind to self antigens. 
If the T-cells bind to any self antigens they are eliminated, 

otherwise they become mature. Mature T-cells are then 
distributed to lymph nodes and start detecting non-self 
antigens. Mature T-cells which pass a negative selection 
test are believed to bind to only non-self cells without 
binding to self-cells.  

Negative selection of T-cells inspired the development 
of the negative selection algorithm (Forrest et al., 1997). 
The algorithm has been popular in various applications for 
anomaly detection purposes (De Castro and Timmis, 
2002). However, this appealing approach shows scaling 
problems when it is applied to a large amount of real data 
(Kim and Bentley, 2001). Since the publication of Kim 
and Bentley’s work, many other studies have reported 
similar problems and proposed potential solutions (Ayara, 
, et al., 2002; Lamont, et al., 1999; Dasgupta and 
Gonzalez 2002; Esponda, Forrest, and Helman, 2003). 
Although these new suggestions provide possible options 
for tackling the scaling problem of the negative selection 
algorithm, none of them has yet reported that a new 
approach that actually scales to a huge amount of data, 
whose size in real applications may reach several 
gigabytes or more. 

3.2 T-cell Maturation  

In order to solve the above problem, we pay attention to 
the other T-cell selection process occurring during T-cell 
maturation. The maturing process of T-cells in the thymus 
consists of two selection stages: positive and negative 
selections (Sompayrac, 1999). Whilst negative selection is 
crucial, to provide self-tolerance to the HIS, positive 
selection is needed for T-cells to recognise the self-Major 
Histocompatability Complex (MHC). The antigens 
presented to T-cells for binding are carried by Antigen 
Presenting Cells (APCs). APCs are special cells that 
engulf antigens distributed throughout a body and convey 
them to T-cells for binding. In addition, APCs transform 
engulfed antigens to a specific form that allows T-cells to 
bind to them. The MHC molecules of APCs perform a key 
role in this transformation. MHCs sample the fragments of  
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Figure 1. MHC/peptide bind to TCR 

antigen proteins (called peptides) inside APCs and carry 
them to the surfaces of APCs. Then, actual binding 
between antigens and T-cells occurs between T-cell 
receptors (called TCR) and MHC/peptide bindings on 
APC surfaces (figure 1). MHCs are known to be unique to 
each individual and therefore provide a marker of ‘self’ . 
Hence, the MHC of each individual is called the self-
MHC.  
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Figure 2. Positive selection and negative selection 

Returning to the maturation of T-cells, unlike negative 
selection, positive selection selects only T-cells that bind 
to self-MHC/peptide bindings on APCs in the thymus. In 
other words, T-cells which do not bind to self-
MHC/peptide bindings on APCs are eliminated. Figure 2 
shows this process together with negative selection1. The 
immunology literature explains the role of positive 
selection as providing T-cells with self-MHC restriction 
(Tizard, 1995; Sompayrac, 1999). The self-MHC 
restriction ensures that all mature T-cells can recognise 
antigen peptides in the context of self-MHC. This feature 
concerns the activation focus of T-cells. For instance, the 
uninfected self-cells having virus-debris stuck on their 
surfaces could activate T-cells if T-cells did not have the 
self-MHC restriction feature. However, with the self-MHC 
restriction feature, T-cells only activate when they can 
bind to peptides carried by self-MHC from the inside of 
infected cells. That is to say, positive selection eliminates 
useless T-cells that cannot activate later.   

Whilst positive selection provides a useful feature 
together with negative selection, there is a question to be 
answered. How can a T-cell, which binds to self-
MHC/peptides during positive selection, pass negative 
selection, which requires it not to bind to self-
MHC/peptides? There are several models attempting to 
explain this point, but none of them yet provides a clear 
answer (Sompayrac, 1999). However, the common 
thinking among these models is that the strength of 
binding between self-MHC/peptide and TCR (known as 
the affinity of a T-cell) determines a pass or a failure of 
the two selection tests. For instance, T-cells binding self-
MHC/peptides with relatively weak affinities are selected 
from positive selection. Among T-cells selected from 
positive selection, those whose affinities are relatively 
strong are discarded during negative selection. Therefore, 

                                                           
1 The order of occurrence of these two selection stages is not 
known yet (Sompayrac, 1999). As a simplifying illustration of 
these stages, we arbitrarily put positive selection before negative 
selection. 
 

T-cells whose affinities are not too strong to be activated 
by self-antigens, but not too weak to be ignored by self-
MHC become mature T-cells.  

Through the self-MHC restriction and self-tolerance, 
T-cells are able to recognise foreign invaders without 
attacking self-antigens. We believe that a T-cell 
maturation process including the positive and negative 
selection together with self-MHC may possibly help to 
reduce the lengthy computing time of AIS based solely on 
the negative selection algorithm. A novel AIS, CIFD, 
proposed here adopts a T-cell maturation process 
consisting of positive selection and negative selection 
alongside self-MHC. We hope that the self-MHC 
restriction feature of artificial T-cells, which is provided 
by self-MHC and positive selection, contributes to 
improve the scalability of CIFD. In addition, CIFD 
accommodates other salient features of the HIS, which are 
often implemented by AIS, such as clonal selection and 
artificial memory cells. The overall conceptual 
architecture of CIFD is introduced in section 5. 

4 CIFD Implementation of T-detector 
Maturation 

This section introduces how self-MHC, positive selection 
and negative selection described above are implemented 
within CIFD. Contrary to many other approaches (De 
Castro and Timmis, 2002), we do not attempt to develop 
CIFD using the exact mechanisms of the HIS. Rather, we 
only mimic them at a high level of abstraction and employ 
other available data mining algorithms for actual 
implementation. 

4.1 Self-MHC  

Self-MHC pre-processes a given antigen to be in an 
appropriate form to bind TCR of mature T-cells. 
Association rule mining is CIFD’s equivalent of self-
MHC. Association rule mining automatically discovers 
interesting associations or correlations among a large 
number of possible attribute values. It selects frequent 
itemsets 2  whose frequency of occurrence (known as 
support) is above a minimum threshold. These frequent 
itemsets are then represented in an “ If-Then”  rule form by 
inserting “ If”  and “Then”  between items. Among these 
rules, those whose accuracy (known as confidence) is 
above a minimum threshold are finally selected. For 
instance, the most commonly used association rule-mining 
algorithm, Apriori (Agrawal and Srikant, 1994), generates 
rules such as “ If milk Then bread with confidence = 70%” 
from supermarket sales transaction data. This rule implies  

                                                           
2 An item is a specific pair of { attribute i, existing value j of 
attribute i) and an itemset is a collection of such items. For 
instance, “Quantity = 100”  is an item and { Quantity = 100, 
Employee-ID = 200}  is an itemset. 



 
HIS Role CIFD Role 

Self-MHC 
Molecule 

Sample the fragments of antigens and 
carry them on the surface of APCs 

Association Rule 
Mining Algorithm 

Extract frequent transaction patterns from input 
antigen data and provide them to CIFD as input 

Self-MHC/Peptide 
bindings 

Antigen binding areas of T-cells  Strong association 
rules  

Antigen data patterns that bind T-detectors 

Positive Selection Provide self-MHC restriction by 
generating immature T-cells that bind self-
MHC/peptides with relatively weak 
affinities 

Generate Immature T-
Detectors 

Provide self-MHC restriction by generating immature 
T-detectors that binds the IF part of strong 
association rules. 

Negative 
Selection 

Provide self-tolerance by eliminating 
immature T-cells that bind self-
MHC/peptides with strong affinities 

Generate Mature T-
Detectors 

Provide self-tolerance by generating mature T-
detectors whose distance to conflicting strong 
association rules is large. 

Self-MHC 
Diversity 

High diversity provides a greater chance 
for non-self antigen peptides to bind self-
MHC 

Calendar Schema Increase the granularities of association rules so that 
it provides a greater chance for non-self antigen data 
to bind T-detectors  

Table 1 Comparison between the human immune system(HIS) and CIFD. 

that a shopper buying milk is 70% likely to purchase bread 
as well.  

The motivation for using association rule mining as 
self-MHC is twofold: scalability and feature construction. 
Apriori offers a clever strategy to increase scalability. It 
uses the monotonic property of frequent itemsets: an 
itemset can be frequent only when all of its subset itemsets 
are frequent. This property allows Apriori to filter out 
itemsets as soon as they have an infrequent subset itemset 
(Agrawal and Srikant, 1994). As a result, the total number 
of itemsets whose supports need to be counted is greatly 
reduced. This feature makes Apriori an efficient algorithm 
and it has become very popular. In addition, Lee (1999) 
showed that Apriori-based association rule mining 
algorithms are competent at constructing meaningful new 
features when the original data format does not necessarily 
provide expressive features reflecting normal patterns. 
These features are analogous to those offered by the self-
MHC of the HIS. As the self-MHC carries the hidden 
antigen peptides onto the APC surface in a visible form, 
Apriori constructs meaningful features of antigen data in 
an intelligent form as an “ If-Then”  rule.  

In addition, Apriori selects strong association rules, 
whose confidences are above a pre-defined threshold, as a 
final rule set. Strong association rules generated by 
Apriori reflect “ frequent transaction patterns” . These are 
the self-MHC/peptide bindings of CIFD, which would be 
presented to bind T-detectors. This means that self-
MHC/peptide bindings of CIFD, which are strong 
association rules, represent “ frequent transaction 
patterns” .  

4.2 Positive Selection and Negative Selection 

In order to perform positive and negative selection, CIFD 
must first generate immature artificial T-cells, called T-
detectors. The best-known approach to generating 
immature T-detectors for AIS is pseudo-random 
generation (De Castro and Timmis, 2002). Some later 
works by (Ayara et al., 2002; Lamont et al., 1999; 
Dasgupta and Gozalez, 2002) also suggest different 

approaches in order to generate immature T-detectors in a 
more efficient way. However, none of these works seem to 
be efficient enough to scale up to the volume of data 
provided to CIFD. CIFD is designed to monitor sales 
transactions involving 19,700 UK outlets and 2,723 
distinct products; each transaction record contains 23 
fields, giving a total of 1.6GB data/day. The immediate 
challenge to be tackled by this work is therefore 
developing a system that can scale up to this huge volume 
of data. This requires CIFD to have both positive and 
negative selection implementation in a modified way. 
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Figure 3. Generate T-detectors  

Instead of randomly generating an immature T-
detector, CIFD generates an immature T-detector in the 
form of an “ If-Then rule”  that contradicts given self-
MHC/peptides. More specifically, it generates an 
immature T-detector by combining two strong association 
rules which share the same consequent (the “Then”  part of 
a rule) (Hussain et al., 2000). For instance, let two strong 
rules presented as self-MHC/peptides to the “Generate 
Immature T-detectors”  process in figure 3 be “ If A Then 
C”  and “ If B Then C” .  An immature detector is generated 
by having an antecedent (the “ If”  part of a rule) that 
combines the two antecedents of the rules and a 



consequent that contradicts the consequent of the two 
rules. Hence, an immature detector generated from the 
above two strong rules would be “ If AB Then not C” . 
Since there can be more than one value representing “not 
C”  as the consequent of this rule, a set of immature 
detectors would be { “ If AB Then D” , “ If AB Then 
E” ,....} . However, among these rules, some rules do not 
follow a CIFD self-context, analogous to immature T-cells 
discarded by positive selection, and they can be filtered by 
applying a rule confidence threshold. Only the immature 
T-detectors whose confidences are higher than a pre-
defined threshold are selected. The “Generate Immature 
T-detectors”  process in figure 3 indicates this process. 
This process corresponds to the positive selection for T-
cell maturation.  

Hussain et al. introduced this approach in order to 
mine unexpected rules (Hussain et al., 2000). Immature T-
detector generation via unexpected rule mining is chosen 
since we believe that this method of implementation will 
provide self-MHC restriction of T-detectors, which 
concerns T-detector activation focus in the current self-
context. This is because immature T-detectors are 
generated and selected based on currently presenting self-
antigen information. In particular, we can find a direct 
resemblance between the elimination of immature T-
detectors whose confidences are very low, and the 
removal of immature T-cells whose affinities are very 
weak during positive selection.  

As shown in figure 3, immature T-detectors are then 
passed to the next process “Generate mature T-detectors” .  
This process is analogous to negative selection of the HIS. 
During this process, immature T-detectors start being 
compared to two strong rules, which are comparable to 
self-MHC/peptide bindings. This process measures the 
distance between two strong rules and each immature T-
detector. Then, as negative selection of the HIS only 
selects the T-cells with low affinities for self-
MHC/peptide bindings, the process will select immature 
T-detectors whose distances to two strong rules are larger 
than a pre-defined threshold. The selected T-detectors 
now become mature T-detectors, which are ready for 
activation.  

One thing that should be noted here is that the CIFD 
negative selection approach does not require T-detectors 
to avoid having high affinities with all self-MHC/peptide 
bindings. Instead, it only requires T-detectors to have low 
affinities with two strong association rules which have 
been used for generating immature T-detectors. After this 
modification, will mature T-detectors still have sufficient 
self-tolerance? To answer this question, it is necessary to 
understand how the T-detectors of CIFD activate. Since T-
detectors exist as a form of “ If-Then”  rule, CIFD allows 
T-detectors to activate when any antigen, which is a 
transaction, is satisfied by the rule represented by a mature 
T-detector. That is to say that only a transaction which has 
attribute values described by the antecedent of a given 
mature T-detector can activate it. As seen above, the 
mature T-detector has been tolerant of all self-antigens 
that have attribute values of the T-detector rule 

antecedent. Therefore, mature T-detectors, generated as 
above, will still have adequate self-tolerance.  

4.3 Self-MHC Diversity 

Since self-MHC is a key molecule that determines mature 
T-cell activation, the diversity of self-MHC types strongly 
influences the overall immunity of the HIS (Hofmeyr, 
2001). As the diversity of self-MHC types increases, there 
is a greater chance for non-self antigen peptides to bind 
self-MHC types. It is known that some viruses, such as the 
Epstein-Barr virus, evolved to avoid binding a certain type 
of self-MHC (Hofmeyr, 2001). As a result, individuals 
having this type of self-MHC are often found to be 
vulnerable to this virus.  

Similarly, the T-detectors of CIFD would be more 
likely to bind diverse anomalies with varied self-MHC 
types. Currently, the self-MHC/peptide bindings of CIFD 
represented by association rules describe frequent patterns 
in transactions. However, there can be different sets of 
frequent transaction patterns depending on diverse time 
granularities. For instance, frequent transaction patterns in 
the morning of weekdays would be different from those in 
the evening at weekends. Thus, various types of self-MHC 
can represent various levels of frequent transaction 
patterns according to diverse time granularities.  

To implement diverse types of self-MHC, CIFD uses 
calendar schema introduced by Li et al. (2002). A 
calendar schema is a relation schema, which represents a 
specific calendar category such as “ for every morning of 
weekdays”  or “ for any time of Monday of the first week of 
the month” . Li et al. modified Apriori so that it generates 
association rules according to various calendar schemas. 
This new algorithm mines an association rule such as “ If 
milk Then bread with confidence = 50% for every 
Monday morning”  or “ If milk Then bread and Newspaper 
with confidence = 90% for every Saturday morning” . 
Thus, all antigens presented to CIFD are represented 
according to different types of time granularity. As various 
types of self-MHC are more likely to bind diverse types of 
antigen peptides, the modified Apriori is more likely to 
generate diverse frequent transaction patterns within 
various time granularities. 

5 CIFD Conceptual Architecture Overview 

In this section, the conceptual architecture of CIFD is 
illustrated. CIFD includes six different processes that 
provide novel features introduced in sections 2 and 3 
together with other features, which can be found from 
other AIS. The six processes are 1) Filter and Convert 
Transactions, 2) Self Profile, 3) Generate Detectors, 4) 
Apply Detectors, 5) Analyse Detections, and 6) Notify 
Detections. Figure 4 shows these processes. 

The Filter and Convert Transactions process filters 
and converts input transaction data into a suitable format 
for processing by CIFD. Transaction data supplied to this 
study is extracted from a central system that handles daily 



data from a large number of outlets operating within a 
retail business organisation. The retail business transaction 
data includes many attributes which do not need to be 
monitored for anomaly/fraud detection purposes. In 
addition, further information required for anomaly/fraud 
detection can be derived by converting existing attributes 
into new formats, e.g. “ transaction time stamp”  can be 
converted to “Day of Week”  and “Time of Day” . 
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Figure 4. Conceptual Architecture of CIFD 

The filtered and converted transaction data is passed to 
the Self Profile process. As discussed in the previous 
sections, CIFD requires a separate process to generate 
self-MHC/peptide bindings. The Self Profile process 
performs this task. It mines association rules, which 
describe frequent transaction patterns within various 
calendar categories.  

The third process, Generate Detectors, generates three 
different types of detector: T-detectors, memory detectors 
and B-detectors. T-detectors play a similar role to that of 
T-cells of the HIS. T-detectors are generated through the 
T-detector maturation process introduced in section 4. In 
addition, immature detectors passed to the process 
“Generate Mature T-Detectors”  in figure 3 have to be 
exposed to various self-MHC/peptide bindings over a 
specific timeframe before they become mature. This is 
because CIFD is designed to process one day’s worth of 
data at one time, for overnight batch processing. Thus, a 
T-detector passing one negative selection test will be 
tolerant only over the given day’s transactions. To ensure 
a T-detector is tolerant over a sufficient portion of self-
antigens (at least all the antigens covering a calendar 
schema assigned to a T-detector), CIFD allows a T-
detector to be mature only when it passes negative 
selection for a sufficient period. 

Memory detectors perform the same role as memory 
cells in the HIS. Memory cells are replicas of T-detectors 
that are successful in detecting fraudulent transactions. As 
memory cells react to reappearing or structurally related 
antigens quicker than an initial reaction, so the CIFD 
memory detectors are also expected to detect similar 
anomalies/frauds to those detected previously.  

B-detectors are analogous to the B-cells of the human 
immune system. In the human immune system, successful 
B-cells are cloned but with slight variations (Somatic 
Hypermutation) and thus they are expected to have 
associative antigen information. Similarly, the B-detectors 
in CIFD are generated by mutations of successful T-
detectors3. The principal rationale behind the use of B-
detectors is that there could well be new anomalies 
(potential frauds) that are committed by slightly modifying 
an existing anomaly/fraud scenario, and there may be yet 
other anomalies, which have similar points of vulnerability 
in common. These three different types of detector will 
exist as an “ If-Then”  rule form labelled by a specific 
calendar category. Furthermore, all detectors will have 
limited life spans so that they will be deleted after a while 
if they detect no anomaly. This feature means that CIFD 
dynamically learns fluid patterns in transactions.  

The next process is the Apply Detectors process. All 
three types of detector are used to monitor new transaction 
data. When new transactions arrive, this process selects 
detectors whose calendar categories meet the time of the 
transactions. The selected detectors are simply compared 
to the transactions and filter the transactions that do not 
satisfy detector rules. The filtered transactions are sent to 
the Analyse Detection process with detectors for further 
analysis. The transactions detected by memory detectors 
may be passed to the Analyse Detections process 
immediately (this maps to a primary response of the HIS; 
Hofmeyr, 2001) whilst the other transactions detected by 
T and B-detectors may require detection by more than one 
detector to be passed to the Analyse Detections process 
(this corresponds to a secondary response of the HIS; 
Hofmeyr, 2001). This is one simple example of how CIFD 
would implement two different immune responses. 
However, more careful study is needed for actual 
implementation. For instance, the various confidence 
values of T-detectors may indicate different immune 
response thresholds, and B-detector may need help from 
T-detectors to trigger immune responses.  

The Analyse Detections process analyses the 
transactions detected by the three different types of 
detector sets. Initial detection results need to be examined 
further in order to decide whether they are indeed 
anomalies. In the HIS, an additional confirmation signal 
called costimulation sent from the innate immune cells is 
required for immune cell activation (Kim, 2002; Hofmeyr, 
2001). The role of costimulation is to disallow inaccurate 
reactions. In the same way, the CIFD system aims to allow 
human auditors to provide feedback into the system in 
order to lower the false positive rate in the future. A kind 
of visualisation tool would help auditors to analyse initial 
detection results. Auditors’  analysis results will determine 
the detectors to be cloned and mutated to produce new B-

                                                           
3 It should be noted that this is a variation on the HIS. B-cells of 
the HIS are also matured in bone marrow and mature B-cells are 
released to the lymph nodes for activation. New B-cells 
generated by applying Somatic Hypermutation are on successful 
B-cells not T-cells. 



detectors and memory detectors, in addition to CIFD’s 
own contribution. In this case, auditors themselves can 
refine selected successful detectors in order to generate 
memory detectors and B-detectors. This mechanism would 
provide CIFD with the ability to learn. Therefore, we 
expect the degree of human intervention will decrease as 
CIFD learns more diverse anomaly/fraud types. 

The Notify Detections process will notify the users of 
the final analysis of detection. It is important to present 
the final detection results of CIFD in a comprehensible 
format to the users. This should include some justification 
as to why CIFD detects some transactions as anomalous. 

Among these six processes, the first two processes, the 
Filter and Convert Transactions and Self Profile are 
developed and tested. The details about these processes 
and test results are reported in (Kim, 2003).  

6 Discussion and Related Work 

In order to reduce the negative selection algorithm’s 
computing time, several works have added an 
evolutionary approach. Ayara et al. (2002) introduced a 
modified negative selection algorithm by employing 
somatic hypermutation. To generate an immature detector, 
it selects a detector matching self-antigens and mutates the 
parts of the detector which match self-antigens. In 
addition, the mutation rate is determined proportionally to 
the affinity of the detector. The rationale behind this 
approach is the generation of mutants that are further away 
from self-antigens. Lamont et al. (1999) uses a genetic 
algorithm to generate detectors. The fitness function of a 
detector is defined as the growth rate of non-self space 
coverage by each detector. Dasgupta and Gozalez (2002) 
introduce a similar approach, employing a genetic 
algorithm to generate detectors. The fitness function 
reported there is defined as the growth rate of non-self 
space coverage by each detector with a penalty value, 
which is the number of matching self-antigens. 

Work by Esponda, Forrest and Helman (2003) 
provides new theoretical analyses that show the number of 
detectors needed to maximise detection coverage when the 
algorithm uses negative selection and positive selection 
respectively. This work also estimates for the first time the 
self-set size that allows the negative selection algorithm to 
be computationally advantageous compared to positive 
selection. This work is significant because it allows 
evaluation of the feasibility of the negative selection 
algorithm before it is applied to a given problem. Another 
theoretical analysis by Wierzchon (2001) also introduces a 
new negative selection algorithm that requires low-space 
complexity to generate detectors.  

All of these works use the negative selection algorithm 
for anomaly detection purposes such as network intrusion 
detection and fault detection. They have indeed shown 
better understanding of the negative selection algorithm 
and their modifications that might cure the scaling 
problem of the algorithm. Nevertheless, none of them has 
been tested on the huge volume of data that CIFD has to 

handle. From the above works, Lamont et al (1999) and 
Dasgupta and Gonzalez (2002) have tested their new 
systems on real data sets, whose sizes are 1.3Mbytes and 
unreported respectively. However, Lamont et al reported 
that their new suggestion requires far too much 
computation time to be applied to the given data set and 
Dasgupta and Gonzalez (2002) did not report computation 
time.  

On the other hand, there are other AIS that process a 
large amount of real data for anomaly detection. Kephart 
et al. (1997) at the IBM research centre developed an AIS 
for virus detection and their prototype has eventually been 
developed into a commercial system (White et al., 2000). 
Another AIS developed by Burgess (2000) is a proactive 
maintenance system for computer systems. Burgess (2000) 
puts the emphasis of AIS on an autonomous and 
distributed feedback and healing mechanism, triggered 
when a small amount of damage can be detected at an 
initial attacking stage. 

Interestingly, these two research efforts deliver 
somewhat different messages from the other work 
introduced in this section. They attempt to identify and 
understand useful processes of the HIS, and to see how 
these can help with devising a new anomaly detection 
system. However, they do not attempt to implement the 
processes using the mechanism of the HIS, only to mimic 
it at a high level of abstraction. They advance other 
conventional algorithms to implement identified human 
immune processes. In other words, they treat each process 
of the human immune system as a black box and thus the 
actual implementation of this box is not considered 
important to provide the desired result from each process. 
This may have assisted them in building a commercially 
successful system. CIFD follows a similar philosophy. 
The relevance to the study of AIS is the understanding of 
useful immune mechanisms for FD, and the 
implementation of these mechanisms is not our main 
concern. 

There are also other AIS that employ a mechanism 
analogous to self-MHC of the HIS. Forrest and Hofmeyr 
(2001) use a permutation mask as self-MHC, which 
defines a permutation of each detector binary string. As 
the diverse types of self-MHC present different types of 
peptides, the permutation mask allows multiple 
representations of detectors. Toma et al. (2000) used the 
internal state of mobile agents as self-MHC and the 
interaction with external information as self-MHC/peptide 
bindings. To the best of our knowledge, CIFD is the first 
AIS to employ self-MHC in order to provide a self-
restriction feature and increase the diversity of detectors. 

7 Conclusion and Future Work 

This paper introduces a novel AIS, called CIFD 
(Computer Immune system for Fraud Detection) that is 
designed to scale to a huge volume of real data for fraud 
detection. In order to improve scalability, CIFD presents 
antigen data using an analogy of the self-MHC molecule 



of the HIS. CIFD also employs negative selection 
combined with positive selection in order to reduce the 
computing time taken to generate T-detectors. Together 
with these novel features, CIFD is equipped with other 
immune features: i) adaptability, which allows CIFD to 
detect dynamically changing anomaly patterns and ii) the 
ability to learn, memorising previously detected anomaly 
patterns and quickly reacting to reappearing or structurally 
related antigens. These are implemented using rather well 
known artificial immune components such as clonal 
selection and memory detectors. 

We also briefly study a group of AIS, which are 
designed to improve the scalability of the negative 
selection algorithm. The study shows that they have not 
been shown to scale to a large volume of real data yet, 
although they provide a better understanding of the 
algorithm and promising modifications. This group of 
work is then compared to the other group of AIS, which 
successfully scale to large amounts of real data. The 
interesting observation made from this comparison is that 
AIS’s with good scalability treat each process of the 
human immune system as a black box and thus the actual 
implementation of this box is not considered important. 
This may have assisted them in building a commercially 
successful system. CIFD also follows a similar 
philosophy.  

We are currently completing the development of Filter 
and Convert Transactions and Self Profile introduced in 
section 5. The preliminary test results are reported in 
(Kim, 2003) and thorough tests are currently being 
conducted. The results reported there show that CIFD 
successfully scales to 700 Mbyte data samples that contain 
a total of 5,054,878 transactions within an acceptable 
computing time. The detailed computation times taken for 
processing daily transactions are presented in (Kim, 
2003). Whilst these results show promising first signs, it is 
necessary to test a completely developed CIFD if it is to 
be considered an effective anomaly detector. With this 
aim, the current work is focused on the development of 
positive and negative selection algorithms in the T-
detector maturation process. The main research issues at 
this stage of work are i) devising an effective 
measurement that represents the distances between self-
MCH/peptides bindings and an immature detector, ii) 
defining an appropriate tolerisation period for an 
immature detector and iii) defining a competent T-detector 
activation scheme.  
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